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This study aims to model the construction process of dialogic discourse. The goal is twofold. The first
step is to redefine Langacker’s (2001, 2012) notion of the current discourse space (CDS) as a recursive
structure that incorporates the idea of “monads” from functional programming (FP). The second step
is to simulate CDS as a monadic recursive structure in a computer program using a GPT-based text
completion API.

Langacker (2001: 151) proposed considering linguistic structures as “instructions to modify the current
discourse space in particular ways.” In this view, every time a speech event occurs, CDS is updated
in such a way that the entire discourse domain, which contains not only the concepts of the speaker,
the hearer, and the subject matter but also the context and the shared knowledge, is passed on to
subsequent speech events.

Following the argument of Hasebe (2021), this study maintains that CDS has a monadic structure and
aims to redefine CDS as such. The concept of a monad is based on the category theory of mathematics
and is widely used in the FP paradigm in computer science. A monad is often described as a “value
wrapped in an environment” (e.g. Hutton 2016), and a structure that satisfies the conditions for being a
monad is characterized by its ability to execute operations continuously and sequentially while maintain-
ing and updating the structure given as the environment (Wadler 1995; Petricek 2018). The conditions
are as follows: There is a procedure (unit, 1a) that wraps the target value x in the environment; there is
a procedure (map, 1b) that “lifts” a function f to another function f’ that deals with the value wrapped in
an environment; and there is a procedure (join, 1c) that flattens a doubled layer of environments. It is
shown that the process of updating CDS includes all these procedures and satisfies the requirements
as a monad, and that CDS can be regarded as a type of “state monad” illustrated in Fig. 1.
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Fig. 1: State Monad

Redefining CDS as a monadic structure has practical advantages. For instance, the idea of CDS as a
monadic structure can be used as a design pattern to implement a natural language computer interface
like ChatGPT. Hasebe (2023) developed “Monadic Chat,” a framework to provide an interactive interface
to conduct a natural language conversation with large language models using the text completion API



of OpenAl. This framework enables developers to easily create a chat-style Al application program.
In addition, by providing an extra implementation code for two component structures (“accumulator”
and “reducer”), the composition and function of “context” and “shared knowledge” within CDS can be
freely configured. The latter functionality allows for a computational simulation of processes such as
incremental context building (Harder 1996; Langacker 2008), stack-based focus/memory management
(Chafe 1994), and compression/abstraction of concepts (Fauconnier & Turner 2000; Barsalou 2005).
The basic architecture of the software, which is essentially a state monad, is illustrated in Fig. 2.
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Fig. 2: Basic Architecture of Monadic Chat
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